Usage¶
This page is your practical starting point for running DYNAMITE: CLI flags, inputs/outputs, and common workflows.
For the algorithmic background and implementation concepts, continue with:
- Concepts → Algorithm
- Concepts → Interpolation grids
- Concepts → Time integration
- Concepts → EOMs and observables
Entry point: ./RG-Evo. Show all options with -h.
Model and parameters¶
-p,-q(integers): model orders (e.g., spherical mixed p-spin). Usep>=2; common:p=3, q=4.-l, --lambda(float): coupling strength (dimensionless). Typical 0–1; study transitions by sweeping.-T, --T0(float|inf): initial temperature; useinffor zero-noise quenches.-G, --Gamma(float): final temperature.
Note: At present, the mixed spherical p-spin equations are hardcoded as in the accompanying paper; other models are not yet implemented. Modular equations of motion will be subject of a future release.
Discretization and accuracy¶
-Lgrid length: selectsGrid_data/<L>/(available: 512/1024/2048). Larger L → higher accuracy and cost.-mmax iterations and-tmax physical time bound the run. For exploratory runs, start with-m 1e4.-dminimum time step and-eerror tolerance control adaptivity (RK54 default with auto-switch to SSPRK104; SERK2 trials optional). Smaller-e→ better accuracy.
Execution controls¶
-g, --gpuboolean: enable GPU kernels (default true when available); setfalsefor CPU-only or reproducibility.-A, --async-exportboolean: asynchronous I/O to avoid blocking the integrator (default true).-ssave outputs (default true) and-ooutput directory root.-Ddebug logging;-vprint build/version;-Iallow resume across incompatible versions (use with care).
Interpolation mode:
- -R, --log-response-interp boolean: interpolate QR and dQR in log space (default false). If enabled, the code interpolates f=log(QR) and g=dQR/QR and exponentiates back; it automatically falls back to linear when any stencil QR<=0. QK/dQK remain linear.
Sparsification:
- -w, --sparsify-sweeps INT: number of sparsify sweeps per maintenance pass.
- -1 (default): auto — CPU: 1 sweep; GPU: 1 sweep normally, 2 sweeps if GPU memory usage > 50%.
- 0: disable sparsification.
- >0: fixed number of sweeps.
Inputs (grids)¶
Interpolation weights/indices are loaded from Grid_data/<L>/:
- theta.dat, phi1.dat, phi2.dat, int.dat
- posA1y.dat, posA2y.dat, posB2y.dat
- indsA1y.dat, indsA2y.dat, indsB2y.dat
- weightsA1y.dat, weightsA2y.dat, weightsB2y.dat
Choose the largest L that fits memory/time for your study; verify convergence of observables with L.
Generating grids and interpolation metadata¶
If Grid_data/<L>/ is missing (or you want to regenerate with different settings), use the built-in grid generator.
For the full ./RG-Evo grid flag reference, outputs, and validation workflow, see
How-to → Generate new grids.
If you just want the default grids for a first run, see Tutorial → Generate grids.
Outputs and observables¶
Each run writes a self-contained output directory that contains:
- the full state (preferably
data.h5, otherwisedata.bin), - a provenance record (
params.txt), - and lightweight text summaries for quick plotting.
For a practical guide to locating files and doing sanity checks, see Tutorial → Reading outputs.
For the on-disk formats (including the compressed snapshot files), see Concepts → Architecture.
Resume is automatic if a compatible checkpoint is found; see Concepts → Version compatibility.
Typical runs¶
- Short aging run (GPU):
./RG-Evo -L 512 -l 0.5 -m 1e4 -D false - CPU-only reproducibility:
./RG-Evo --gpu false -L 512 -l 0.5 -m 5e3 - Parameter sweep in λ around a transition:
for lam in 0.4 0.5 0.6; do ./RG-Evo -L 1024 -l "$lam" -m 2e4 -D false; done